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Summary

Object-oriented design of simulation programs appears to be very attractive because of the

natural association of components in the simulated system with objects. There is great

potential in distributing the simulation across several computers for the purpose of parallel

computation and its consequent handling of larger problems in less elal_qed time. One

approach to such a design is to use "actors", that is, active objects with their own thread

of control. Because these objects execute concurrently, communication is via messages.

This is in contrast to an object-oriented design using passive objects where communication

between objects is via method calls (direct calls when they are in the same address space

and remote procedure calls when they are in different address spaces or different

machines). This paper describes a performance analysis program for the evaluation of a

design for distributed simulations based upon actors.

1. Introduction

The motivation for this research was distributed simulation of aircraft engines as part of an

engine simulation environment developed by NASA Lewis Research Center for the
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Simulation System". NPSS is a flexible object-oriented simulation of aircraft engines

requiting high computing speed. Figure 1 shows the scope of the NPSS simulation

environment. NPSS Environment

Figure 1
The NPSS Simulation En,_onment

It is desirable to run the simulation on a distributed computer system with multiple

processors executing portions of the simulation in parallel. The purpose of this research

was to investigate object-oriented structures such that individual objects could be

distributed. The set of classes used in the simulation nust be designed :o facilitate parallel

computation and not just remote computation. As a consequence, the cbject design is

based upon the MIT "Actor" model era concurrent object, that is, an object with its own

thread of control [Schoeftler94]. The engine components, modeled as a set of actor

objects, attempt to run concurrently on the various m_chines. Since the portions of the
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simulationcarriedout in parallelarenot independent of one another, th.ere is the need for

communication among the parallel executing processors which in turn implies need for

their synchronization. Communication and synchronization can lead to decreased

throughput as parallel processors wait for data or synchronization signals from other

processors.

Simulations like this involve extensive iteration in order to match boundary conditions. In

an engine simulation, for example, some flow through the engine is routed back and mixed

with input flow. This feedback requires a special component called a "s_lver" to be used.

Essentially the solver estimates the output for the purpose of calculating the net input

data. Then the simulation calculates the data through the engine component modules, each

of which permits calculating outputs given inputs. The solver then compares the calculated

output data to the estimated data, revises its estimate, and iterates until adequate

agreement is reached.

A set of C++ classes which carried out the required synchronization au'omatically and

which allowed arbitrary distribution among computers has been designed. There is a need

for performance analysis both to evaluate the design and to guide the distribution of the

active objects for a given simulation [Lavenberg83, pp 1-10],[Schoefller96].

Section 2 of this paper describes the active objects, the way they communicate, and the

way they synchronize. Section 3 discusses the queuing network model of the actor objects

and the buffer objects which queues the messages as they pass from actor to actor. Section
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4 describes the organization of the performance analysis program including the ability to

dynamically configure a given set of objects among different computers in different ways.

Section 5 describes the results of this analysis and the limitations of the performance

analysis program.

2. The actor objects, their communication, and their

synchronization

An object representing a physical component to be simulated is modeled conceptually as

shown in figure 2.1. The module is shown with distinct inputs and outputs, each of which

represent ports or connection points so that objects can be interconnected. The figure uses

the term "module" to differentiate it from other objects (such as connector objects). Data

objects represent a group of data items which correspond to the variables at an interface

between two components. Sharing of data is then taken to be sharing of data objects all of

whose components represent variables calculated at a given time instant or iteration. By an

input or output port is meant a path through which da:.a objects can be requested and

delivered via messages.

Similarly, outputs represent ports through which this module object can send data objects

it has calculated at a given time instant or iteration. It s important to uaderstand that the

module itself does not know about the source of data _bjects it receiveg or the destinations

of data objects it creates for these are dependent upon the particular sl.mulat.ion being

carried out. It is equally important to understand that the modules must be capable of
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executing on any processor in the network for load balancing purposes. In order to

achieve these two requirements the relationship among input and output ports is defined

by the interconnection of modules as shown in figure 2.1.

Inputsfrom ethe¢modules Module

Outputs1o_ module=

Figure 2.1
Modules with inputs, outputs and connectors

Objects represent engine modules and calculate pressure, temperatures, and flows given

input conditions to the module. The module is modeled in single or multiple dimensions

using either steady-state or time-evolving relationships. The model interconnects objects

two ways:

.

.

objects whose inputs are actually outputs of another object are interco:mected in

the sense that an update of the former object at a given time stel_, or iteration

cannot take place before the latter object output has been obtah: _d.

solver objects are used to break closed loops which occur in (1) by supplying

inputs to one module object in the loop based upon previous values of the output
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of the other module which must be the same as the supplied inp'_t when iteration

converges.

Actor-object characteristics are:

,

2.

.

.

Each actor acts as though it has its own thread of control.

Actors communicate by sending messages which are passed from the source actor,

through a network-wide message passing system to the machine containing the

destination actor. The message is delivered to the process conta'.ning the

destination actor when that process becomes active (scheduled to execute in the

destination machine). For two actors in the same machine, the message is passed

the same way and differs only in that the message never leaves the machine to be

transmitted to the other machine. Such messages still are handled by the message

passing system.

Each actor acts as though it has its own queue of messages which it processes one

at a time in a run-to-completion manner in the sense that a given actor-object does

not start processing a second message until the processing of the first message has

been completed. Note that this does not preclude the task in whi',h the actor

resides being blocked in favor of other tasks.

Processing is dependent upon the state of the actor-object and may include change

of state.
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Component "=_ _I _PCobje=t

I I "Component _ _-,"
IPC Object

In order to achieve efficient connection of modules whether they are in the same process

(address space), in separate processes in the same machine, or in separate machines,

connector objects use an "inter process communication" object which is specialized for

either local or remote communication depending upon the location of the objects (Figure

2.2).

Figure 2.2

Components, connectors, and their inter-process-communication objects

At execution time, each component object and its connector is assigned to a process in a

machine based upon load-balancing considerations. It is only at this time that each

connector determines whether the connector with which it communicates is local or non-

local. The connector then dynamically creates the appropriate local or remote ]PC object

whose behavior understands how to efficiently send local or remote messages.
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If two modules are in the same process, their connectors use local ]:PC objects as shown in

Figure 2.3.

An intra-process call is
a normal function call with

data returned within the call
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Figure 2.3

A local call is a normal function call with data directly returned

The component calls a connector function which in turn calls an (in-line) IPC function

which for this specialized IPC object directly calls the next ]:PC object etc. so that the

communication is equivalent to a function call instead of an actual message passing.
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If the components are not in the same process, their connectors use IPC objects which can

An inter-process call
retums from the IPC object
directly to the component

1IComponent

An Asynchronous call is
made by the IPC object

to the destination

/ \
IPCObjea

$

#

0

J

I i 1°Component hoc_ •
• _ • 41'

• ,ib •

,b • _ o

send messages. In this case, it is not desirable to block the calling modu:e so control

returns directly a_er the call reaches its IPC objects. That IPC object ir,itiates an

asynchronous call to the remote component requesting data. When that data is returned,

the IPC object then initiates a return call to the original module. This form of connection is

shown in Figure 2.4.

Figure 2.4
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A Remote call involves a non-blocking call and a remote message

This organization greatly simplifies the scheduling of module executions whether they are

on the same machine or different machines which is a key requirement for this simulation.

The actor model associates a single thread of execution with each object. As a result, each

module (actor) may be assigned to a separate UNIX process in a given network of

machines, or multiple actors may be assigned to a single process. In any case, a pseudo-

control program must be present in each UNIX process which keeps track of the state of

each actor in that process and turns control over to it depending upon its state. The

network message passing system actually delivers messages to this pseudo control

program which in turn passes the message to the actor in between activations of actors.

Thus no concurrency problem can arise because of message delivery concurrent with an

actor updating its state.

An overall control program uses the specification for how the objects are to be distributed

to spawn the processes in the various machines and sets up %onnector" objects to

dynamically interconnect the modules into an arbitrary configuration.

The behavior of a module for one iteration is taken to be:

°

2.

Request input data objects.

Wait (block) until the data objects have arrived.
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.

5.

Compute the data objects which represent outputs of the computation. This is the

major computational work of the simulation.

Send output data objects in response to requests.

Advance time/iteration and repeat the sequence.

Synchronization is then automatic, because no module can begin a particular iteration until

all its requested inputs have arrived from the modules generasting these data objects for

that specific iteration number. After the last arrives, it may compute as required by that

module to update during an iteration. It must then send output data objects to all other

modules conne_ed to it before starting the next iteration. Since each module requests its

inputs, those messages arrive at their source module. There the messages must wait until

the module has completed updating its outputs for that iteration can process them before

the module can respond to those requests by sending the requested data object.

This behavior results in a complex state for the actor objects because they are often in a

"blocked" or waiting state and a variety of events can cause transition out of these blocked

states.

3. The queuing network model of a set of communicating actor

objects

As is customary in performance analysis of computer systems, a queuing network model

was created with a queuing model for each component actor and for each solver module.
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The model is taken to be a Markov model with all exponential service times (module

update times and message transmission times)[Klein75,p.21]. In addition, a single queuing

center models the message handling system for the network. Each actor has a state as does

the buffer. The state of the queuing network then is the collection of states of all the actors

and the buffer. Unlike simple queuing networks (called separable networks [Sauer81, p.

86],[Lazowska84, p. 162]), the state of the actor is very complex as is the determination

of a legal network state. These are discussed below.

Since each specific input to an actor is actually a specific output of another actor, it is

convenient to consider each such pair a queuing network class (this is different fi'om the

C++ usage of the word class). The term "message class His used to avoid confusion. Each

actor is considered to have as many outputs as their are inputs of other actors connected

to that actor and the output data of the actor is considered to be the same for all its

outputs.

Since an actor sends a request message for each input to the specific output of the source

actor which in turn sends a reply message back to that input, the message class can be

taken to have a network population of I and its state at any instant is simply the location

of the message: at the source actor, in the buffer, or at the destination actor. There are,

then, as many message classes as inputs in all actors in the network. Unlike many queuing

networks, the message classes visit only 3 centers in t_e network no matter how many

modules there are: the source module for the data; the destination module for the data;

and the buffer module representing the connecting network.
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The state of an actor consists of the following:

1. its iteration number

2. the state of each of its inputs which is one of: present with a request for the current

iteration input data not yet sent; present with current iteration input data received; or not

present implying the actor has requested input data for the current iteration but has not yet

received a reply.

3. the state of each of its outputs which is one of: a request message is present for the

current iteration data but it has not yet been sent; the message requesting the current

iteration data is not present and has not yet been received; the message requesting the

current iteration data is not present because the data has already been sent; a request

message for the next iteration's data is present (see below).

4. the actor update state which is one of: pre-computation (all input data for the

current iteration is not yet present); computation (all input data for the current iteration is

present and the module is in the process of doing its computational update for this

iteration); post-computation (the module is in the process of sending its updated output to

other actors connect to it and for which this actor has received a request or is waiting for

such a request to arrive).

5. CPU ownership which is true tithe CPU in which the actor resides is assigned to

that actor and is false otherwise. CPU ownership can be true only tithe actor can use the
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CPU which means it can send an input request message, send an outpu*, reply message, or

perform update.

An actor moves from its pre-computation state to its computation state when the last reply

to its input data requests arrives. It moves from computation state to post-computation

state when it has completed its update computation for the current iteration. It moves

from post-computation state to pre-computation state when it has completed sending its

last output data. Notice that while waiting for input replies and output requests the actor

modules are "blocked".

An interconnected set of modules may form a dosed loop (Figure 3.1). In this case, each

module needs the output of the previous module before it can update in a given iteration.

Clearly no module will be able to execute. Hence a "solver" module is introduced to break

the loop and allow the computation to proceed.
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= C1 C2 C3

(a) Three components connected in a loop

Solver C1 C2 C3

Use of a solver module to "break" the loop

Figure 3.1

An example of three modules interconnected into a closed loop (a)

and the use of a solver to break the loop (b)

The only difference between a "component" module and a "solver" module is when the

module changes from the current iteration number to the next. In the case of a component,

changing from post-computation to pre-computation is accompanied by an increment of

the iteration number (i.e., one iteration consists of requesting input, getting all input,

updating, and sending all output data). The solver module is responsibl_ for breaking

dosed loops of actor connections and hence already has output to send at the beginning of
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its iteration (which is always connected to a componert module) and then proceeds to

request input data (which represents updated outputs of component modules), and finally

perform update (which provides outputs to be available at the beginn/ng of the next

iteration). Hence it changes iteration number upon completing its update.

The iteration number as part of the state is an apparent complication because it would

make the number of states arbitrarily large. It is easy to see, however, that along any

closed path through the input of an actor and out through an output to the input of

another actor etc. until the path closes implies that no two actors in thr,t path can have

iteration numbers different by more than 1. In fact, the only time iteration numbers

anywhere in the network can differ by more than 1 is for a series of actors connected input

to output with no closed path. For example, if actor A's single output is connected to

actor B's single input and actor B's single output is connected to actor C's single input and

C's single output is not connected to any other actor, then it is possible that actor C could

be in iteration k, actor B in iteration k+l (waiting for C to move to iteration k+l and

request B's output), and A could be in iteration k+2 (waiting for B to"move to iteration

k+2 and request A's output). Except for serial strings of actors such as'these, no actors in

the network may differ by more than one in iteration number. Hence the iteration state of

all actors is taken to be either 0 or 1, an even or an od,t iteration number -,_ith no error.

The message-buffer state is the state of each message class: not present; present in the

direction of destination-to-source (meaning a request for output); or present in the

direction of source-to-destination (meaning a message with the reply data). This buffer is
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assumed to be independent of the CPU's in the network executing the actors and hence

operates in parallel with all the actors. In effect, it has its own CPU and hence never

blocks (although it can empty).

Strategy for determining legal network states

Solution of the queuing network problem requires generation of all legal network states.

This is very complex because an actor's outputs may be connected to several actors inputs

which implies that there are constraints on the iteration numbers of the involved actors as

well as the input and output portion of the states (the message in any class can be at only

one place at any instant) as well as the actors' update states. This complexity was

conveniently alleviated by defining three tests to determine a legal state.

Test 1: The "locally legal" test

First, a test of "locally legal" state of an actor was defined as any values for the states of

that actor (independent of others) which can ever exist. For example, an actor's state

cannot be local legal if it is in the computation state but with an input not present.

Furthermore, the state of the actor must be consistent with the presence or lack of

presence of the CPU at that CPU. For example, it is not locally legal to be in the pre-

computation state with the CPU unless there is an input present which has not yet been

requested because the CPU cannot be assigned to an actor unless it can use the CPU.

Sharing of data is then taken to be sharing of data objects all of whose components
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representvariablescalculated at a given time instant o= iteration. In addition, there is a

constraint between the state of the module which is the source of a given message class

(that is, outputs the data object) and the module which is the destinatiolt of that message

class (is the input for that data object) and the message-buffer object. Appendix I shows

the definition of the "combined state of the source and destination modules" which share a

class (that is, a class is an output of the source module and an input of the destination

module). These legal state combinations are specific to a message class. For example, the

fifth legal combined state in Appendix I is:

( 'C', PREC, INP_RQST_OUT, 'C', 0, PREC, NO_OU'I__.RQST,1,0}

which indicates that the destination module is a Component in the pre-cempute state with

the input not present in that module because a request has been sent to the destination

module for data but not received yet; the source module is also a Component in the same

iteration as the destination module and in the pre-compute state. The source module has

not.yet received a request for its output of this class in this iteration. The last two items

indicate whether or not the message of this class is in the buffer (message set but not yet

delivered) and the direction of the message (source to destination or destination to

source). These items are redundant because the message must be either in the destination

module or the source module or the buffer and depending upon the inpvrand output

states, the direction of the message is also clear. In the above example, the second last

item indicates that the message of this class is in the barfer and this is consistent with the

destination message state (request message has been sent but reply not yet received) and
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source module output message state (no output request yet received). F:_l'.ermore, it is

clear that the message is still enroute to the source module as the last item above indicates.

These two redundant items are present for convenience of checking.

Test 2: the "network legal" test

Second, a "network legal" test is defined for each message class which _,nsures that the

single message in each class is at only one location in the network and that the two actors

it relates (one is the source and one is the destination) have compatible iteration numbers.

This test is by far the most complex of the tests.

Test 3: the CPU test

Third, each CPU must be assigned to one and only one actor at any time.

Thus any trial network state generated is easily tested for legality by first applying the

locally legal test to each message class, and then the network legal test followed by the

CPU test. Two different strategies were used to generate states in the implemented

performance analysis program to ensure that all legal states are correctly generated.

The first method, called "state increment", methodically generates all combinations of

values in the network state (a trial state), and then determines whether it is a legal state by

applying the locally legal test for all message classes and rejecting the state if any fails;
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thenrejecting the network state if the CPU test fails; and finally rejecting the network state

if the network-legal test fails. If all tests pass, the state is retained.

The second method, called "state transition", starts by generating an ol:viously legal

network state. Then each possible transition from this state is examined in sequence, and a

trial state to which it transitions generated. The trial state is first tested to determine if it is

a legal state (with the same series of tests as for the state increment method) and rejected

if it is not legal. Then it is added to the list of generated states if it has not been generated

previously and hence already present in the list.

The state transition method is significantly faster because many fewer trial states are

generated but would not detect a set of legal states which are not reach _ble fi'om the initial

legal state for pathological networks with such states. The state increment method

however generates all legal states. By generating state the two ways and showing that the

same state set is generated, we are assured that the state generation program is in fact

correct and that the network is indeed an irreducible Markov chain [Trivedi82, p. 319]

as is apparent from the experimental implementation of the actors.

4. Design of the performance analysis program

The performance analysis program has two major parts: configuration generation and

analysis. A complete listing is contained in the appendixes.
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Configuration generation

Configuration generation creates a set of interconnected objects describing the set of

actors to be analyzing and their interconnection. The defining data consists of'.

1. The structure of the network of actors which includes for each actor its type

(component or solver), the number of inputs to the actor, and the source module for that

input. This data is independent of how the actors are assigned to comFuters for execution

and also independent of the actual service times of the actors.

2. A list of the actors in the network along with their various service times. This

includes the average time to initiate a message requesting input data, the average time to

perform the update of the actor each iteration, and the average time to initiate an output

message ( the reply to the input data request message) containing the updated output data

for the actor. Note that this data is independent of how the actor is interconnected with

other actors and the distribution of actors to processors.

In addition, the buffer actor which represents the communication systen: ;.- specified by

two parameters: the average service time to process a message a local message and the

average service time to process a remote message. A message arrives at the buffer as a

"local" message if its source and destination actors are assigned to the same processor

(CPU) and as a "remote" message if the source and destination actors are assigned to
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separate processors. This behavior of the communication system is characteristic of the

observed experimental system on which the actual actors were implemented.

3. Specification of the allocation of actors to processes in processors. All processors

are assumed to be identical and the buffer is assumed to be separate from all processors

containing actors. In the distributed actor implementation, a process is dispatched by the

operating system of the machine in which it runs (hence in a round-robin manner within a

UNIX workstation) and within a process, the actors are dispatched by a simple run-to-

completion dispatcher which also responds to arriving messages and moves the data into

the actor. In the analysis program, the same arrangement is assumed but no account for

the overhead of dispatching is included. This is because the message passing overhead

dominates the context switching and dispatching in th. = actual program. The separation of

the input specification allows a given set of actors logically interconnected to solve a

specific problem to be repeatedly analyzed for different distributions of the actors among

various numbers of processors, thereby determining the efficiency gaineo from a given

physical distribution.

C++ classes used to set the up the actors and their distribution in the configuration

phase are the same classes used in the implementation of the distributed actor program

itself, again for the purpose of ensuring that both the analysis program and the actual

distributed actor implementation are consistent with one another:
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.

.

°

.

class group encapsulates the set of actors assigned to a given process in a

machine.

class machine encapsulates the individual processors and the gl oups of actors

executing in each process there.

class module encapsulates an individual module, including its

type(component/server), number of inputs and outputs, and connections to other

modules.

class modCiass encapsulates the types of data objects used as inputs and outputs

for the actors.

class npssrun encapsulates the overall configuration to be analyzed including

pointers to all modules, data types, groups, and machines.

The configuration section first instantiates the object of class npssrun followed by separate

adding of rnaehines, actors, and connections and then requests the distribution to be

analyzed followed by creation of groups and allocating them to the machines. At this

point, the complete data structure description of the system to be analyzed has been

created in a form no different from that created in the distributed actor implementation.

Performance analysis

Once the configuration to be analyzed has been created, the set of objects used to generate

the states &the queuing network and the global balance equations whose solution yields

the steady state probabilities of states is generated.
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The more important classes involved are the following:

° class net which encapsulates the objects which define the state of each actor and

the network buffer and the processors used in the simulation, class net also

contains the methods which control the generation of network .states, the

generation of the global balance equations, the solution of the b_'dance equations,

and the generation of performance information from the state probabilities.

. class module encapsulates a module from the point of view of analysis which

chiefly means the module parameters object avd the module state vector object.

Since network state consists of the states of each module and the buffer, the

network state is stored distributed among the modules, with each containing its

own part of the network state. Hence a network state at index k is the collection of

module and buffer states at index k.

3. class modState encapsulates a state of a module.

4. class modStateVector encapsulates the vecto_ of module state objects.

. class modParams encapsulates module parameters used in state generation. All of

these parameters are found from the set of configuration objects previously

generated.
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Once the network state vector has been created as cartier described, then the definition of

each state is available for the generation of global balance equations. There is one such

equation for each network state and it has one term for the total flow leaving the state and

one term for each state which may transition to this state. As a consequence, a global

balance equation is a linear equation in the state probabilities, but only a small number of

states have non-zero terms in the equation. Hence it pays to store the sparse balance

equations as a set of terms each of which identifies the linear coefficient and the index of

the associated state variable. This is carried out in a general purpose set of classes for

storing and solving global balance equations.

The more important classes involvedare:

. class joint which encapsulates the vector of doubles representing the probabilities

of the states.

. class eqTerm2 encapsulates one term in a balance equation consisting of the index

of the state and the coefficient of the term.

. class power2 which encapsulates the storage of one balance equation in the form

of an array of eqTerm2 objects..
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4. class stgBlk encapsulates storage for a group of global balance eouations.

. class stg encapsulates the multiple storage groups used for the global balance

equations.

The latter two classes permit the generation of global balance equations without advanced

knowledge of the amount of storage space required while heavily utilizing the storage

space allocated. Blocks are allocated as needed but the entire storage e_ea permits access

to equations and terms by index without separate knowledge of the exa_ storage layout.

The "2" indicator at the end of classes eqTerm and power simply indicate the second of

two ways investigated to store terms either of which may t/e used in conjunction with

classes stg and stgBlk and were the ways of choice for this analysis program.

The solution of the global balance equations is carried out by the npower method" which is

effective for solving global balance equations of irreducible networks [Ste_ art78,p 145]. It

effectively modifies the coefficient matrix of the balan:e equations so t_3t repeated

multiplication of an initial trial solution vector by this matrix converges _t, the desired

solution. The implementation in power2 class carries out the matrix multiplication directly

using the sparse storage scheme implemented without actually generating the matrix.

Convergence has been observed to be quick with no rumerical problems observed in the

distributed actor problems studied here.
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Appendix lIl contains the listings of performance analysis program class headers.

Appendix IV contains the listings of the implementation files for preservation of the

program as of the date of this report. It is important to note that this program has evolved

over a 4 year period with much experimentation with various ways to model the actor

networks and implement the resulting queuing network model. Hence nmch of the code

exists for debugging purposes, detailed printing of intermediate resuks etc. and is not

intended to be a user-friendly program for general use.

5. Results and conclusions

The resulting analysis program successfully uses the same data files input to the distributed

actor implementation and generates not only the states and state probabili_ vector, but

detailed performance statistics on the individual actors and the network buffer. The results

are shown by the following examples.

Example 1 -- an actor network with actor update times long compared to message times

The first examples use a simple set of actors in which performance is dominated by the

update time of the actors and the message passing time causes an incidental overhead and

the second consists of the same system but with actor update time of the same size as the

message passing times. The first example emphasizes the calculation of performance for

various choices of physical distribution.
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Considera simple example of two modules each with t single input and tingle output with

the input of each connected to the output of the other (Figure 5.1). Because of the closed

loop connection, it is necessary to insert a solver module which provides the input to each

of the components each iteration and whose objective is to observe each modules output

and to iterate until solver outputs converge to solver inputs.

This network then has two component modules each with one input and one output and

one solver module with two inputs and two outputs.
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Component
1

IiC°mp nent
2

Solver

Component
2

Figure 5.1
A two component application with solver

Example 1 - update time long compared to message times

The module connection input describes the above example:

Module S SOLVER 0 Module C1 MODULE 0
m
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Module S SOLVER 1 Module C2 MODULE 0

Module C1 MODULE 0 Module S SOLVER 0

Module C2 MODULE 0 Module S SOLVER 1

Each line contains: the name of a module (arbitrary name), the type of module as defined

in the input file "clsname.dat", the number of one of the modules inputs, the name of the

source module, the type of the source module, and the output number of the source

module which supplies that input. Note that the solver Module_S takes its first input from

the single output 0 of component Module_C1 and its second from the single output 0 of

component Module_C2. Module_C1 takes its single input from output 0 of the solver

module Module_S and Module_C2 takes its single input from output 1 of the solver.

Message transmission times assumed for the buffer are 10 microseconds for remote

messages and 1 microsecond for local messages. All modules have identical message

transmission times (1 microsecond) and update times _100 microseconds). The analysis

program is written assuming "microseconds" as the basic unit for service times. There

would be no change if service times were uniformly changed to milliseconds or some other

unit except that the printed report outputs would have to be scaled accordingly. It would

be a simple change to allow different time scales for tie service times.

Clearly the application update time dominates the message handling times. Notice that the

solver has two send two input request messages and two output reply messages per

iteration whereas each component sends one input and one output message.
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The performance model generates 194 states for this example, requiring the solution of

194 linear equations in the same number of unknowns. This is a relatively small state

space.

For all three actors in 1 process in a single CPU, the results are:

Module 0 update rate = 3230.5799 period: 0.0003 sees or 0.3095 millisecs

Module 1 update rate -- 3230.9976 period: 0.0003 sees or 0.3095 millisecs

Module 2 update rate = 3230.2549 period: 0.0003 sees or 0.3096 millisecs

The module time per iteration are the same, 309.5 microsecs. Since all t aodules are in the

same processor, the iteration time should be the 300 microseconds for the three update

times, 6 microseconds for the messages requesting input and sending outputs for each

class, plus the time for the concurrent buffer to pass the messages among the actors. Since

each message passes through the buffer, the total buffer time per iteration is 6 messages at

1 microsecond each. However only 309.5-300-6 = 3.5 microseconds appear in the

iteration time, implying overlap of buffer message transmission with actor work for the

remainder of the time.

Module Prob Prob Prob Prob Prob Prob Prob

Number PREC C CDONE cpu msg busy busy

wait wait update
0 0.5867 0.3231 0.0902 0.0000 0.6640 0.0129 0.3231

1 0.6636 0.3283 0.0081 0.0058 0.6646 0.0065 0.3231
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2 0.4228 0.5736 0.0036 0.4934 0.1771 0.0065 0.3230

Theadvantage of a model as detailed as this one, is the information about where the

system spends its time. Any performance item may be calculated by summing the

performance function over the individual states weighted by the state probabilities.

Note above that the two components spend 59% and 66% of their time in the PreCompute

mode waiting for the solver to reply with the data it has requested. These modules have

just completed their updates in the previous iteration and have sent their output data to the

solver. The server must handle this data transmission and then update itself before it can

replay to these messages.

Notice also that module 2, the solver, could use the CPU but must wait for the CPU 49%

of the time. This must be because the component modules are performing their updates in

this time.

Buffer Performance

Prob Empty = 0.9742
Utilization = 0.0258

Num Lcl Msgs = 0.0375

Num Rem Msgs = 0.0000

Lcl Msg Rate = 25836.9678

Rem Msg Rate = 0.0000

Total Msg Rate = 25836.9678
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Buffer performance indicates the buffer is usually empty (97% of the time). This is a

consequence of the short message transmission time compared to the update times of the

actors.

Overall queue length by population class are:

Class[O] avg pop = 1.0000 dest: 0.7449 src: 0.2455 bfr: 0.0096
Class[l] avg pop = 1.0000 dest: 0.4200 src: 0.5708 bfr: 0.0093

Class[2] avg pop = 1.0000 dest: 0.3398 src: 0.6513 bfr: 0.0089

Class[3] avg pop = 1.0000 dest: 0.8229 src: O. 1674 bfr: 0.0097

Contrast these results with the case where each module is in a separate CPU.

Now the results are the following"

Module 0 update rate = 3381.1667 period: 0.0003 secs or 0.2958 millisecs
Module 1 update rate = 3379.0812 period: 0.0003 secs or 0.2959 millisecs
Module 2 update rate = 3382.7768 period: 0.0003 secs or 0.2956 miUisecs

The solver must execute serially, however, because it needs the results of both

components before it can update. However this would only be 200 rp.icroseconds for the

solver and the pair of components. But the iteration update time is 296 seconds. Because

the actors are in separate machines, the assumed buffer message transmission times are

now 10 microseconds each because they are machine-to-machine instead of process-to-

process within one machine. There are 8 such messages sent each iteration. Furthermore,

when the buffer sends input data to one component, it can begin its update. While this

update proceeds, the buffer sends the input data to the second. Hence *.hecomponents do

not have their input data at the same time. Thus they cannot overlap 109% of the time.

However this is not the whole answer.
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The two components are in separate machines and can execute in parafid if they have their

inputs at the same time. However, queuing network analysis assumes the service times are

exponentially distributed. Even though the average time is 100 microseconds for each of

the two components executing in parallel, the actual compute time is assumed to be

exponentially distributed and both components must finish before the solver can begin

execution. The expected time for two components with the same average service time

(with exponential distributions) is actually 1.5 times the average time of each. This is

because, the finish time is actually the longer of the two compute times selected from the

independent distribution. Hence the expected time for both of them to finish is 150

microseconds, added to the solver time yields 250 microseconds. The a4.ditional 46

microseconds is clue to the time remote 10 microseco_d messages must pass between the

solver and the components, delaying their start of execution.

Repeating this analysis with the remote message trans,nission time of the buffer set to 1

microseconds instead of 10 yields an iteration time of 255 microseconds, the 250

microseconds as expected plus 5 microseconds for the (now short I microsecond)

messages.

Example 2 - A more complex example
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Complexity of the model is primarily based upon the number of states required to describe

a configuration. This example generates between 2000 and 2500 states for each of the

configurations, requiring solution of a set of as many 2500 simultaneous equations.

Because these equations correspond to a Markov model with unique solution, the Power

method used for the solution can readily handle this number ofequations[Stewart7$]. The

program in this report has been tested with up to 5000 states. It will h_dle many more

than this number, but has not been tested for larger numbers of states.

The example consists of three components connected end-to-end but with a solver with

three inputs and three outputs which breaks the connections between the components so

they can be computed in parallel (Figure 5.2).
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:[Component
1

Component
2

Component
3

Solver

Figure 5.2
An example with a large num!_er of states

Six different solutions for the model are given. In all six, the service tirn_s of the solver

and component are identical: 100 microseconds to transmit a message (the request for

input data or the sending of output data), and 200 microseconds to update the component

or solver each iteration.
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Threedifferentconfigurationswhichallocatethe four modules to a different number of

processors (1, 2 or 4) are each given for two different values for the buffer message

transmission times. Buffer message transmission times represent the speed of the

interconnecting network.

The "slower" network cases correspond to buffer message transmission time of 100

microseconds for a remote message, and 50 microseconds for a local message. Thus

message transmission time between actors is comparable to the modules' update time of

200 microseconds.

The "faster" network cases correspond to buffer message transmission time of 20

microseconds for as remote message and 5 microseconds for a local message. These

message transmission times are small compared to the modules' update "._e of 200

microseconds.

The results of these runs are contained in Appendix 1I. The table below summarizes the

resulting iteration times for the various configurations and buffer message times.

Number of Number Rer_iontime(microsecs) _er_iontime(microsec_

Processors of St_es SlowNetwork FastNetwork

1 2083 2068 2005

2 2208 1680 1357

4 2484 1681 1100
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Notice that a fast communication network allows a near 2-to-I decreases in computation

time (2 millisecs down to I millisec) using multiple processors. The slow network, on the

other hand, experiences no such improvement because of the additional time modules

must wait while remote messages are transmitted from the buffers. The times for 2 and 4

processors is not an error in the above table. With 2 processors, fewer remote messages

are sent and the net result is an almost identical iteration time.

It is important to reafize that the examples with the slow network are extreme with the

message transmission times being comparable to module update time. T,hese examples do

become pertinent, however, if one starts dividing the computation amoag many actors

such that the individual actors are responsible for less and less computation. Such a

distribution of an application is said to be among "fine grain" objects rather than "coarse

grain" objects in which the computation time of each actor is long compared to the

message transmission time.

Conclusions

The object of this effort was to produce an efficient performance analys_:_ program that

could be used to guide the distribution of actor objects among processors. This is a

realistic approach to determining the distribution because the effects of queuing delays and

statistical affects due to concurrent execution of modules is difficult to estimate and not

obvious intuitively as the examples here show. Most applications are run repeatedly so
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that the effort involved in searching for a good distribution is well worth the effort

The program developed here is quite efficient even in models with several thousand states,

running completely in less than a minute in most cases. However it does have the

fundamental limitation that the number of states can become excessive ,.s more complex

configurations of actors are used.

As a consequence, another technique for performance analysis which is approximate (as

opposed to the exact solution used in the program) has been developed and reported

separately [Schoeffler97]. This program has been used to calibrate the approximate

analysis. Some combination of the two approaches appear to be useful as part of the

distributed actor computational system as a basis for choosing a good distribution of

actors among processes and processors.

-39-



References

['Klein75] Kleiru'ock, Leonard, "Queueing Systems", Vol 1, John W'dey &Sons, NYC,

1975

_avenberg83] Lavenberg, Stephen S., "Computer Performance Modeling Handbook",

Academic Press, 1983

[-Lazowska, E. and J. Zahorjan, G. Graham, K. Sevcik, "Quantitative system

performance", Prentice-Hall, 1984.

[Sauer81] Sauer, Charles and K. M. Chandy, "Computer Systems Performance

Modeling", Prentice-Hall, 1981

[Schoeffler94] Schoeffler, J., "An object-oriented approach to distributed simulation",

A/AA conference, Cleveland, Ohio, 1994.

[Schoeffler96] Schoeffler, J., "Design of object-oriented distributed simulation classes",

final report, NASA grant NAG 3-1441, November, 1995.

[Schoeffler97] Schoeffler, J., "The nearest neighbor decomposition of queuing network

performance models", report on NASA grant NCC 3-461, 1997.

[Stewart78] Stewart, William J., "A comparison of numerical techniques in Markov

Modeling", CACM 21, 2 (February 1978), 144-152.

[Trivedi, K.] Trivedi, K, "Probability & Statistics With Reh'ability, Que_ ing, and Computer

Science Applications", Prentice-Hall, 1982.

-40-



Appendix I: Locally Legal State Combinations

The legal combinations of state between the destination actor with a given class as input
and the source actor which has the same class as n output are listed below. The legal

combinations depend on whether the source and destination are a component ('C') or a

solver ('S'); the module state which may be pre-compute (PREC), compute (C), or post-

compute (CDONE); and the output state which is one of no request present

('NO_OUT_RQST), request received but not sent (RQST_IT), request already sent
(RQST IT SENT), or request for next iteration present (RQST NEXT_IT).

The definition of the 9 elements in the combined state are:

0: destination module type (Solver or Component)
1: destination module execution state

2: input state
3: source module type (Solver or Component)

4: relative iteration (0, +1, -1) relative to destination module iteration
5: source module execution state

6: output state

7: message for this class is in buffer (1) else 0
8: direction for message (0: to source, 1: to destination, -1: no message)
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All legal combinations for Component to Component are:

'C I,

Iet _

ICf _

let _

leo

ICl _

10° _

IOl I

IOl I

ICI 1

IOl )

ICl l

IOl I

IOl I

IC| _

PREC, NO_INP_RQST, 'C', 0, PREC, NO_OUT_RQST,0,- 1},

PREC, NO_INP_RQST, 'C', 0, C, NO_OUT_RQST,0,-1},

PREC, NO_INP_RQST, 'C', 0,CDONE, NO_OUT_RQST,0,-1 },

PREC, NO_INP_RQST, 'C',-1,CDONE,RQST IT SENT,0,-1 },

PREC,INP_RQST_OUT, 'C', 0, PREC,NO_OUT_RQST ,1, 0},

PREC,INP_RQST_OUT,

PREC,INP_RQST_OUT,

PREC,INP_RQST_OUT,

PREC,INP_RQST_OUT,

PREC,IN _RQST_OUT,

PREC,INP_RQST_OUT,

PREC,IN _RQST_OUT,

PREC,INP_RQST_OUT,

PREC,IN _RQST_OUT,

PREC,INP_RQST_OUT,

PREC,INP_RQST_OUT,

PREC, INP_IN, 'C', 1,

'C', 0, PREC, RQST_!T ,0,-1},

'C', 0, C,NO_OUT_RQST ,1, 0},

'C', 0, C, RQST_IT 0,-1 },

'C', 0,CDONE,NO_OUT_RQST ,1, 0},

'C', 0,CDONE, RQS'I_IT ,0,-1},

'C', 0,CDONE,RQST IT SENT, l, 1 },

'C',-1,CDONE,RQST IT SENT, l, 0},

'C',- 1 ,CDONE,RQST_NEXT_IT,0,- 1 },

'C', 1, PREC,NO_OUT_RQST,1, 1 },

'C', 1, C,NO_OUT_RQST,1, 1},

'C', 1,CDONE,NO_OUT_RQST,1, 1 },

PREC,aqO_OUT_RQST,0,- 1},

'C', PREC,

'C', PREC,

'C', C,

'C', C,

'C', C,

'C', C,

'C',CDONE,

'C',CDONE,

'C',CDONE,

'C',CDONE,

INP_IN, 'C', 1, C,NO_OUT_RQST,0,-1},

INP_IN, 'C', 1,CDONE,NO_OUT_RQST,0,-1},

INP_IN, 'C', 0,CDONE,RQST IT SENT,0,-1},

INP_IN, 'C', 1, PREC,NO_OUT_RQST ,0,-1},

INP_IN, 'C', 1, C,NO_OUT_RQST ,0,-1},

INP_IN, 'C', I,CDONE,NO_OUT_RQST ,0,-1 },

INP_IN, 'C', 0,CDONE,RQST IT SL'NT,0,-1},
INP_IN, 'C', 1, PREC,NO_OUT_RQST ,0,-1 },

IN_IN,'C', 1, C,NO_OUT_RQST_0,-1},

INP_IN, 'C', I,CDONE,NO_OUT_RQST ,0,-1 },
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All legal combinations for Component to Solver are:

ISI

{'S',
{'S',
{'S',
{ 'S', PREC,INP_RQST_OUT,

{ 'S',PREC,INP_RQST_OUT,

{ 'S',PREC, INP_RQST_OUT,

{ 'S',PREC,INP_RQST_OUT,

{ 'S',PREC,INP_RQST_OUT,

{ 'S',PREC,INP_RQST_OUT,

{ 'S',PREC,INP_RQST_OUT,

{ 'S',PREC,INP_RQST_OUT,

{ 'S',PREC,INP_RQST_OUT,

{ 'S',PREC,INP_RQST_OUT,

{ 'S',PREC,INP_RQST_OUT,

{ 'S',PREC,IN _RQST_OUT,

{'s',PREC,
{ 'S', PREC,

{'s',PPmC,
{'s',PRec,
{'S', C,

{'S', C,

{'S', C,

{'S', C,

{ 'S',CDONE,

{ 'S',CDONE,

{ 'S',CDONE,

{ 'S',CDONE,

PREC, NO_INP_RQST, 'C',0,PREC, NO OUT_RQST,0,-I },

PREC, NO INP RQST, 'C',0, C, NO OUT RQST,0,-I},

PREC, NO_INP_RQST, 'C',0,CDONE, NO_OLr't RQST,0,-I },

PREC, NO_INP_RQ ST, 'C',-I,CDONE,RQST_IT._SENT,0,- l},

'C',0,PREC,NO_OUT RQST ,I,0},

'C',Q,PREC, RQST IT,0,-1},

'C', 0, C,NO_OUT_RQST ,1, 0},

'C', 0, C, RQST_IT ,0,-1 },

'C', 0,CDONE,NO_OUT RQST ,1, 0},

'C',0,CDONE, KQST IT,0,-1},

'C',0,CDONE,RQST IT SENT, I, 1},

'C',-I,CDONE,RQST IT_SENT, I,0},

'C',-I,CDONE,RQST_NEXT_IT,0,- l},

'C',I,PREC,NO_OUT RQST, I,1},

'C', 1, C,NO_OUT_RQST,1, 1},

'C', 1,CDONE,NO_OUT_RQST,1, 1},

INP_IN, 'C °, 0,CDONE,NO_OUT RQ,_T,0,- 1 },

INP_IN, 'C', 1, PREC,NO_OUT RQST,0,-1 },

INP IN, 'C', I, C,NO_OUT_RQST,6,-1 },

INP_IN, 'C', I,CDONE,NO OUT_RQST,0,-1 },

INP IN, 'C', 0,CDONE,RQST IT SENT,0,-1},

INP_IN, 'C',I,PREC,NO_OUT_RQST ,0,-I},

INP_IN, 'C',I, C,NO_OUT_RQST ,0,-I},

INP IN, 'C',I,CDONE,NO OUT_RQST ,0,-I},

INP_IN, 'C',0,PREC, NO_OUT_RQST,0,-I },

IN-P_IN,'C',0, C, NO_0UT_RQST,0,-I },

INP_IN, 'C',0,CDONE, N0_0UT_RQST,0,-1 },

INP_IN,'C',-I,CDONE,RQST IT SENT,0,-1},
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All legal combinations for Component to Solver are:

PREC, NO_IN-P_RQST, 'S', 0,CDONE, NO_OUT_RQST,0,-1 },

PREC, NO_INP_RQST, 'S',-1, PREC,RQST IT SENT,0,-1 },

PREC, NO_INP_RQST, 'S',-1, C,RQST IT SENT,0,-1},

PREC, NO_INP_RQST, 'S',-1,CDONE,RQST IT SENT,0,-1 },

PREC,INP_RQST_OUT, 'S', 0, PREC,RQST IT SENT, 1, 1 },

'C',

ICI _

ICI _

ICl _

ICllt

'C', PREC,INP_RQST_OUT,

'C', PREC,INP_RQST_OUT,

'C', PREC,INP_RQST_OUT,

'C', PREC,INP_RQST_OUT,

'C', PREC, INP_RQST_OUT,

'C', PREC,INP_RQST_OUT,

'C', PREC,INP_RQST_OUT,

'C', PREC,INP_RQST_OUT,

'C', PREC,INP_RQST_OUT,

'C', PREC,INP_RQST_OUT,

'C', PREC,INP_RQST_OUT,

'C', PREC,IN-P_RQST_OUT,

'c', PREC,INP_RQST_OUT,
'C',PREC, INP_IN,'S',0,
'C',PREC, INP_IN,'S',0,
'C', PREC,

'C', PREC,

'C', C,

'C', C,

'S', 0, C,RQST IT SENT, l, 1 },

'S', 0,CDONE,NO_OUT_RQST ,1, 0},

'S', 0,CDONE, RQST_IT,0,-1},

'S', 0,CDONE,RQST IT SENT, l, 1},

'S',-1, PREC,RQST IT SENT, l, 0},

'S',-1, PREC,RQST_I_XT_IT,0,-I},
'S',-1, C,RQST IT SENT, l, 0},

'S',-1, C,RQST_NEXT_IT,0,- 1},

'S',-1,CDONE,RQST IT SENT, l, 0},

'S',- 1,CDONE,RQST_NEXT_IT,0,- 1},

'S', 1, PREC, NO_OUT_KQST,1, 1},

'S', 1, C, NO_OUT_RQST,1, 1 },

'S', 1,CDONE, NO_OUT_RQST,1, 1 },

PREC,KQST IT SENT,0,-1},

C,RQST IT SENT,0,-1},

INP_IN, 'S', 0,CDONE,RQST IT SENT,0,-1},

INP_IN, 'S', 1,CDONE,NO_OUT_RQST ,0,-1 },

INP_IN, 'S', 0, PREC,RQST IT SENT,0,-1 },

INP_IN, 'S', 0, C,RQST IT SENT,0,-1 },

'C',

ICI _

'C',CDONE,

'C',CDONF.,

'C,CDONE,,

'C,CDONF.,

'C',CDONE,

'C',CDONE,

C, INP_IN, 'S', 0,CDONE,RQST IT SENTi0,-1 },

C, INP_IN, 'S', 1,CDONE,NO_OUT_RQST ,0,-1 },

INP_IN, 'S', 0, PREC,RQST IT SEI_T,0,-1},
INP_IN, 'S', 0, C,RQST IT SENT,0,-1},

INP_IN, 'S', 0,CDONE,RQST IT SENT,0,-1 },

INP_IN, 'S', 1, PREC,NO_OUT_RQST ,0,-1 },

INP_IN, 'S', 1, C,I,IO_OUT_KQST ,0,-1 },

INP_IN, 'S', 1,CDONE,NO_OUT_RQST ,0,-1 },
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Appendix II Output of example runs

Run 1: Slow Network, Modules all in 1 CPU

Module Module_S 1 of class SOLVER33 has 3 inputs and 3 outputs _cl is assigned to

group Group_l

Module Module_C1 of class MODULE has 1 inputs and 1 outputs and is assigned to

group Group_l

Module Module_C2 of class MODULE has 1 inputs and 1 outputs and is assigned to

group Group 1

Module Module_C3 of class MODULE has I inputs and 1 outputs and is assigned to

group Group_l

...... Summary Report .....
1 machines used

1 module groups (processes)

4 modules (components)

-- display of file: 'connect.dat'

Module $1 SOLVER33 0Module C1 MODULE 0

Module S1 SOLVER33 1 Module C2MODULE 0

Module $1 SOLVER33 2Module C3 MODULE 0

Module C1 MODULE 0Module S1 SOLVER33 0

Module C2 MODULE 0 Module $1 SOLVER33 1

Module C3 MODULE 0 Module $1 SOLVER33 2

Solver module

Module Class SOLVER

Module _Iodule $1' parameters

3 inputs

0 input pop class number

1 source module of input 0

0 source module output number

1 input pop class number

2 source module of input 1

0 source module output number

2 input pop class number

3 source module of input 2

0 source module output number
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Run 1: Slow Network, Modules all in 1 CPU

Component module

Module Class COMPONENT

Module 'Module_Cl' parameters

1 inputs

3 input pop class number

0 source module of input 0

0 source module output number

Component module

Module Class COMPONENT

Module _¢Iodule C2' parameters

1 inputs

4 input pop class number

0 source module of input 0

1 source module output number

Component module
Module Class COMPONENT

Module _vfodule C3' parameters

1 inputs

5 input pop class number

0 source module of input 0

2 source module output number

Input Output Compute

Module Req Send Time

Num (us) (us) (us)
0 100 100 200

1 100 100 200

2 100 100 200

3 100 100 200

Buffer Local and Remote Service Times are: 50 and 100

There are 1 cpu's executing 4 modules

Module 0 update rate = 483.3611 period: 0.0021 secs or 2.0688 millisecs

Module 1 update rate = 483.4976 period: 0.0021 secs or 2.0683 millisecs

Module 2 update rate = 483.4645 period: 0.0021 secs or 2.0684 millisecs

Module 3 update rate = 483.3133 period: 0.0021 secs or 2.0691 miUisecs

Module Prob Prob Prob Prob Prob Prob Prob

Number PREC C CDONE CPU msg busy busy

wait wait msg update

0 0.6031 0.0967 0.3002 0.0000 0.6133 o.2901 0.0967

1 0.5374 0.2046 0.2580 0.1485 0.6581 o.0967 0.0967

2 0.4524 0.2974 0.2502 0.2655 0.5411 0.0967 0.0967

3 0.4642 0.4818 0.0540 0.6187 0.1879 0.0967 0.0967
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Run 1: Slow Network, Modules all in 1 CPU

Buffer Performance

Prob Empty = 0.7099

Utilization = 0.2901

Num Lcl Msgs = 0.4145

Num Rein Msgs = 0.0000

TotalNum Msgs = 0.4145

Lcl Msg Rate = 5801.0144

Kern Msg Rate = 0.0000

Total Msg Rate = 5801.0144

Overall queue length by population class

Class[0] avg pop = 1.0000 dest: 0.7709 src: 0.1565 bff: 0.0726

Class[l] avg pop = 1.0000 dest: 0.6835 src: 0.2431 bff: 0.0734

Class[2] avg pop = 1.0000 dest: 0.5443 src: 0.3869 bff: 0.0688

Class[3] avg pop = 1.0000 dest: 0.5112 src: 0.4222 bff: 0.0666

Class[4] avg pop = 1.0000 dest: 0.5986 src: 0.2350 bff: 0.0663

Class[5] avg pop = 1.0000 dest: 0.8139 src: 0.1194 bfr: 0.0668
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Run 2: Slow Network, Modules in 2 CPU

Module Module_S1 of class SOLVER33 has 3 inputs and 3 outputs _d is assigned to

group Group 1

Module Module_C1 of class MODULE has 1 inputs and 1 outputs and,is assigned to

group Group_l

Module Module_C2 of class MODULE has 1 inputs and 1 outputs and is assigned to

group Group__2

Module Module_C3 of classMODULE has linputsand I outputsand isassignedto

group Group_2

m_ displayof file:'connect.dat'........

Module S1 SOLVER33 0Module CI MODULE 0
i

Module S1 SOLVER33 1 Module C2MODULE 0

Module Sl SOLVER33 2 Module C3 MODULE 0

Module C1 MODULE 0Module Sl SOLVER33 0

Module C2 MODULE 0 Module S1 SOLVER33 1

Module C3 MODULE 0Module Sl SOLVER33 2
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Run 2: Slow Network, Modules in 2 CPU

Solver module

Module Class SOLVER

Module 'Module_S 1' parameters

3 inputs

0 input pop class number

1 source module of input 0

0 source module output number

1 input pop class number

2 source module of input 1

0 source module output number

2 input pop class number

3 source module of input 2

0 source module output number

Component module
Module Class COMPONENT

Module 'Module_C1' parameters

1 inputs

3 input pop class number

0 source module of input 0

0 source module output number

Component module
Module Class COMPONENT

Module 'Module_C2' parameters

I inputs

4 input pop class number

0 source module of input 0

1 source module output number

Component module
Module Class COMPONENT

Module _vlodule_C3' parameters

I inputs

5 input pop class number

0 source module of input 0

2 source module output number
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Run 2: Slow Network, Modules in 2 CPU

Input Output Compute

Module Req Send Time

Sum (us) (us) (us)
0 100 100 200

I I00 I00 200

2 I00 I00 200

3 100 I00 200

Buffer Local and Remote Service Times are: 50 and I00

There are 2 cpu's executing 4 modules

Number Probability that all

Modules are busy

Module 0 update rate = 595.4878 period: 0.0017 sees or 1.6793 millisecs

Module 1 update rate = 595.1323 period: 0.0017 sees or 1.6803 millisecs

Module 2 update rate = 595.2128 period: 0.0017 sees or 1.6801 millisecs

Module 3 update rate = 595.2093
0 0.1124

1 0.5848

2 0.3029

Module Prob Prob

Number PREC C

0 0.6719 0.1191

1 0.5620 0.3481

2 0.6714 0.1190

3 0.5708 0.2299

period: 0.0017 sees or 1.6801 millisecs

Prob Prob Prob Prob Prob

CDONE CPU msg busy busy

w_t wmt msg upd_e

0.2090 0.0000 0.5237 0.3572 0.1191

0.0899 0.2623 0.4996 0.1190 0.1190

0.2096 0.0000 0.7619 0.1190 0.1190

0.1993 0.1495 0.6124 0.1191 0.1190

-50-



Run 2: Slow Network, Modules in 2 CPU

Buffer Performance

Prob Empty -- 0.4047
Utilization = 0.5953

Num Lcl Msgs = 0.3080

Num Rein Msgs = 0.8549

TotalNum Msgs - 1.1629

Lcl Msg Rate = 2381.0716

Rein Msg Rate = 4762.1423

Total Msg Rate = 7143.2139

Overall queue length by population class

Class[0] avg pop = 1.0000 dest: 0.5979 src: 0.2340 bfr: 0.1682

Class[l] avg pop = 1.0000 dest: 0.6778 src: 0.1052 bfr: 0.2170

Class[2] avg pop = 1.0000 dest: 0.5642 src: 0.2161 bfr: 0.2197

Class[3] avg pop = 1.0000 dest: 0.5278 src: 0.3324 bfr: 0.1398

Class[4] avg pop = 1.0000 dest: 0.3881 sr¢: 0.4017 bfi': 0.2101

Class[5] avg pop = 1.0000 dest: 0.4953 src: 0.2965 bfr: 0.2082
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Run 3: Slow Network, Modules in 4 CPU

Module Module_S 1 of class SOLVER33 has 3 inputs and 3 outputs and is assigned to

group Group_l

Module Module_C 1 of class MODULE has 1 inputs and 1 outputs and is assigned to

group Group_2

Module Module_C2 of class MODULE has 1 inputs and 1 outputs and is assigned to

group Group_3

Module Module_C3 of class MODULE has 1 inputs and 1 outputs and i_ assigned to

group Crroup 4

....... Summary Report ....
4 machines used

4 module groups (processes)

4 modules (components)

--- display of file: 'connect.dat',

Module S1 SOLVER33

Module $1 SOLVER33

Module $1 SOLVER33

Module C1 MODULE

Module C2 MODULE

Module C3 MODULE

0 Module C1 MODULE 0
D

1 Module C2 MODULE 0

2 Module C3 MODULE 0

0 Module SI SOLVER33 0

0 Module $1 SOLVER33 1

0 Module SI SOLVER33 2
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Run 3: Slow Network, Modules in 4 CPU

Solver module
Module Class SOLVER

Module Wlodule_S 1' parameters

3 inputs

0 input pop class number
1 source module of input 0

0 source module output number

1 input pop class number

2 source module of input 1
0 source module output number

2 input pop class number

3 source module of input 2
0 source module output number

Component module
Module Class COMPONENT

Module Wlodule_Cl' parameters

1 inputs
3 input pop class number

0 source module of input 0

0 source module output number

Component module
Module Class COMPONENT

Module WIodule C2' parameters

1 inputs

4 input pop class number
0 source module of input 0

1 source module output number

Component module
Module Class COMPONENT

Module 'Module_C3' parameters

1 inputs

5 input pop class number
0 source module of input 0

2 source module output number
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Run 3: Slow Network, Modules in 4 CPU

Input Output Compute

Module Req Send Time

Num (us) (us) (us)

0 100 100 2OO

1 100 100 200

2 100 100 200

3 100 100 200

Buffer Local and Remote Service Times are: 50 and 100

There are 4 cpu's executing 4 modules

Module 0 update rate = 594.3243 period: 0.0017 secs or 1.6826 millisecs

Module 1 update rate = 594.6744 period: 0.0017 secs or 1.6816 millisecs

Module 2 update rate = 594.7934 period: 0.0017 secs or 1.6813 miUisecs

Module 3 update rate = 594.8774 period: 0.0017 secs or 1.6810 millisecs

Probability that multiple modules are busy:

Number Probability

0 0.2053

1 0.4896

2 0.2242

3 0.0722

4 0.0087

Module Prob Prob

Number PREC C

0 0.6810 0.1189

1 0.6705 0.1189

2 0.6691 0.1190

3 0.6719 0.1190

Prob Prob

CDONE CPU

walt wmt

0.2001 0.0000

0.2105 0.0000

0.2119 0.0000

0.2092 0.0000

Prob Prob

msg busy

msg update

0.5244 0.3568

0.7621 0.1190

0.7620 0.1190

0.7621 (,.1190

Prob

busy

0.1189

0.1189

0.1190

0.1190
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Run 3: Slow Network, Modules in 4 CPU

Buffer Performance

Prob Empty = 0.2863
Utilization = 0.7137

Num Lcl Msgs = 0.0000

Num Rein Msgs = 1.6160

TotalNum Msgs = 1.6160

Lcl Msg Rate = 0.0000

Rem Msg Rate = 7136.9581

Total Msg Rate = 7136.9581

Overall queue length by population class

Class[0] avg pop = 1.0000 dest: 0.6089 src: 0.1108 bfr: 0.2803

Class[l] avg pop = 1.0000 dest: 0.6001 src: 0.1154 bfr: 0.2845

Class[2] avg pop = 1.0000 des't: 0.6037 src: 0.1191 bfr: 0.2772

Class[3] avg pop = 1.0000 dest" 0.3890 src" 0.3593 bfr: 0.2517

Class[4] avg pop = 1.0000 dest: 0.3904 src: 0.3495 bfr: 0.2601

Class[5] avg pop = 1.0000 dest: 0.3876 src: 0.3503 bfr: 0.2621

-55-



Run 4: Fast Network, Modules all in 1 CPU

Module Module_S 1 of class SOLVER33 has 3 inputs and 3 outputs and is assigned to

group Group_l

Module Module_C I of class MODULE has 1 inputs and 1 outputs and is assigned to

group Cn'oup_ 1

Module Module_C2 of class MODULE has 1 inputs and 1 outputs and is assigned to

group Group_l

Module Module_C3 of class MODULE has 1 inputs and 1 outputs and is assigned to

group Group_l

.... display of file: 'connect.dat'.
Module S1 SOLVER33

m

Module $1 SOLVER33

Module $1 SOLVER33

Module C1 MODULE

Module C2 MODULE

Module C3 MODULE

0 Module C1 MODULE 0
m

1 Module C2 MODULE 0

2 Module C3 MODULE 0

0 Module S1 SOLVER33 0

0 Module $1 SOLVER33 1

0 Module $1 SOLVER33 2
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Run 4: FastNetwork, Modules all in 1 CPU

Solver module

Module Class SOLVER

Module WIodule_S 1' parameters

3 inputs

0 input pop class number

1 source module of input 0

0 source module output number

I input pop class number

2 source module of input 1

0 source module output number

2 input pop class number

3 source module of input 2

0 source module output number

Component module
Module Class COMPONENT

Module 'Module_C 1' parameters

1 inputs

3 input pop class number

0 source module of input 0

0 source module output number

Component module
Module Class COMPONENT

Module _odule_C2' parameters

1 inputs

4 input pop class number

0 source module of input 0

1 source module output number

Component module
Module Class COMPONENT

Module 'Module_C3' parameters

1 inputs

5 input pop class number

0 source module of input 0

2 source module output number
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Run 4: FastNetwork, Modulesall in 1 CPU

Input Output Compute

Module Req Send Time

Num (us) (us) (us)
0 100 100 200

1 100 100 200

2 100 100 200

3 100 100 200

Buffer Local and Remote Service Times are: 5 and 20

There are 1 cpu's executing 4 modules

ProbabiHtyth_muRiplemodulesare busy

Number Probab_ty

0 0.0026

1 0.9974

Module 0 update rate = 499.0980 period: 0.0020 secs or 2.0036 millisecs

Module 1 update rate = 498.7390 period: 0.0020 secs or 2.0051 millisecs

Module 2 update rate = 498.5420 period: 0.0020 secs or 2.0058 millisecs

Module 3 update rate = 499.0213 period: 0.0020 secs or 2.0039 millisecs

Module Prob Prob Prob Prob Prob Prob Prob

Number PREC C CDONE CPU msg busy busy

wmt walt msg update
0 0.5113 0.0998 0.3889 0.0000 0.6010 0.2992 0.0998

1 0.4592 0.1572 0.3836 0.1497 0.6509 (I.0997 0.0997

2 0.4043 0.2122 0.3834 0.2520 0.5486 0.0998 0.0997

3 0.4938 0.4562 0.0499 0.7360 0.0645 0.0998 0.0998
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Run 4: Fast Network, Modules all in 1 CPU

Buffer Performance

Prob Empty = 0.9701

Utilization = 0.0299

Num Lcl Msgs = 0.0311

Num Rein Msgs = 0.0000

TotalNum Msgs = 0.0311

Lcl Msg Rate = 5983.6854

gem Msg Rate = 0.0000

Total Msg Rate = 5983.6854

Overall queue length by population class

Class[0] avg pop-- 1.0000 dest: 0.8429 src: 0.1519 bfr: 0.0052

Class[l] avg pop = 1.0000 dest: 0.7879 src: 0.2068 bfr: 0.0052

Class[2] avg pop = 1.0000 dest: 0.6382 src: 0.3566 bfr: 0.0052

Class[3] avg pop = 1.0000 dest: 0.5906 src: 0.4042 bfr: 0.0052

Class[4] avg pop = 1.0000 dest: 0.6456 src: 0.3493 bfr: 0.0051

Class[5] avg pop = 1.0000 dest: 0.9355 src: 0.0594 bfi': 0.0051
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Run 5: Fast Network, Modules in 2 CPU

Module Module_S 1 of class SOLVER33 has 3 inputs and 3 outputs aaa_ is assigned to

group Group_l

Module Module_C1 of class MODULE has 1 inputs and 1 outputs and is assigned to

group Group_l

Module Module_C2 of class MODULE has 1 inputs and 1 outputs and is assigned to

group Group_2

Module Module_C3 of class MODULE has 1 inputs and 1 outputs and is assigned to

group G-roup_2

--- display of file: 'connect.dat'.
Module $1 SOLVER33 0Module C1 MODULE 0

Module $1 SOLVER33 1 Module C2MODULE 0

Module $1 SOLVER33 2Module C3 MODULE 0
n

Module C1 MODULE 0Module S1 SOLVER33 0

Module C2 MODULE 0 Module $1 SOLVER33 1

Module C3 MODULE 0Module S1 SOLVER33 2
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Run 5: FastNetwork, Modules in 2 CPU

Solver module

Module Class SOLVER

Module WIodule_S l' parameters

3 inputs

0 input pop class number

1 source module of input 0

0 source module output number

1 input pop class number

2 source module of input 1

0 source module output number

2 input pop class number

3 source module of input 2

0 source module output number

Component module
Module Class COMPONENT

Module 'Module C1' parameters

1 inputs

3 input pop class number

0 source module of input 0

0 source module output number

Component module
Module Class COMPONENT

Module qVlodule_C2' parameters

1 inputs

4 input pop class number

0 source module of input 0

1 source module output number

Component module
Module Class COMPONENT

Module 'Module_C3' parameters

1 inputs

5 input pop class number

0 source module of input 0

2 source module output number
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Run 5: Fast Network, Modules in 2 CTU

Input Output Compute

Module Req Send Time

Num (us) (us) (us)
0 I00 I00 200

1 I00 I00 200

2 I00 I00 200

3 I00 I00 200

Buffer Local and Remote Service Times are: 5 and 20

There are 2 cpu's executing 4 modules

Number Probability

Modules are busy

Module 0 update rate =

Module 1 update rate =

Module 2 update rate =

Module 3 update rate =

that all

737.7397

737.1089

736.6123

736.9040

period: 0.0014 secs or 1.3555 miUisecs

period: 0.0014 secs or 1.3567 millisecs

period: 0.0014 sees or 1.3576 millisecs

period: 0.0014 secs or 1.3570 millisqcs

Probability that multiple modules are computing

Number Probability
0 0.0035

1 0.5190

2 0.4775

Module Prob Prob

Number PREC C

0 0.5820 0.1475

1. 0.4787 0.4321

2 0.5901 0.1473

3 0.4469 0.3119

Prob Prob Prob Prob

CDONE CPU msg busy

walt w_t msg upd_e

0.2704 0.0000 0.4105 (.4420

0.0892 0.4312 0.2739 0.1474

0.2626 0.0000 0.7053 0.1474

0.2412 0.2185 0.4866 0.1476

Prob

busy

0.1475

0.1474

0.1473

0.1474
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Run 5: Fast Network, Modules in 2 CPU

Buffer Performance

Prob Empty = 0.8673

Utilization = 0.1327

Num Lcl Msgs = 0.0200

Num Rem Msgs = 0.1351

TotalNum Msgs = 0.1551

/.,el Msg Rate = 2947.5004

Rein Msg Rate = 5896.2358

Total Msg Rate = 8843.7362

Overall queue length by population class

Class[0] avg pop = 1.0000 dest: 0.6311 sre: 0.3585 bfr: 0.0103

Class[l] avg pop = 1.0000 dest: 0.8626 sre: 0.1038 bfr: 0.0336

Class[2] avg pop = 1.0000 dest: 0.7048 sre: 0.2605 bfr: 0.0347

Class[3] avg pop = 1.0000 dest: 0.7369 sre: 0.2534 bfr: 0.0097

Class[4] avg pop = 1.0000 dest: 0.4836 sre: 0.4826 bfr: 0.0338

Class[5] avg pop = 1.0000 dest: 0.6358 sre: 0.3312 bfr: 0.0330
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Run 6: Fast Network, Modules in 4 CPU

Module Module_S1 of class SOLVER33 has 3 inputs and 3 outputs and is assigned to

group Group_l

Module Module_C 1 of class MODULE has 1 inputs and 1 outputs and is assigned to

group Group_2

Module Module_C2 of class MODULE has 1 inputs and 1 outputs and is assigned to

group Group_3

Module Module_C3 of class MODULE has 1 inputs and 1 outputs and is assigned to

group Group_4

--- display of file: 'connect.dat',
Module S1 SOLVER33 0Module C1 MODULE 0

Module S1 SOLVER33 1 Module C2 MODULE 0

Module S1 SOLVER33 2 Module C3 MODULE 0

Module C1 MODULE 0Module S1 SOLVER33 0

Module C2 MODULE 0 Module S1 SOLVER33 1

Module C3 MODULE 0Module SI SOLVER33 2
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Run 6: FastNetwork, Modules in 4 CPU

Solver module

Module Class SOLVER

Module _vlodule_S 1' parameters

3 inputs

0 input pop class number

1 source module of input 0

0 source module output number

1 input pop class number
2

0

2

3

source module

source module

input pop class

source module

0 source module

Component module

of input 1

output number

number

of input 2

output number

Module Class COMPONENT

Module _Iodule_C 1' parameters

1 inputs

3 input pop class number

0 source module of input 0

0 source module output number

Component module
Module Class COMPONENT

Module _¢Iodule_C2' parameters

1 inputs

4 input pop class number

0 source module of input 0

1 source module output number

Component module
Module Class COMPONENT

Module WIodule_C3' parameters

1 inputs

5 input pop class number

0 source module &input 0

2 source module output number
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Run 6: Fast Network, Modules in 4 CPU

Input Output Compute

Module Req Send Time

Num (us) (us) (us)
0 100 lOG 200

1 100 100 200

2 100 100 200

3 100 100 200

Buffer Local and Remote Service Times are: 5 and 20

There are 4 cpu's executing 4 modules

Number Probability that all

Modules are busy

Module 0 update rate -- 909.0453 period: 0.0011 secs or 1.1001 millisecs

Module 1 update rate = 908.8122 period: 0.0011 secs or 1.1003 miUisecs

Module 2 update rate = 908.7623 period: 0.0011 secs or 1.1004 miUisecs

Module 3 update rate = 908.7547 period: 0.0011 secs or 1.1004 miUisecs

Probability that multiple modules are computing

Number ProbabiUty
0 0.0093

1 0.4217

2 0.3487

3 0.1825

4 0.0377

Module Prob Prob

Number PREC C

0 0.5338 0.1818

1 0.5773 0.1818

2 0.5735 0.1818

3 0.5717 0.1818

Prob Prob

CDONE CPU

w_t w_t

0.2844 0.0000

0.2409 0.0000

0.2448 0.0000

0.2466 0.0000

Prob grob

msg busy

msg upd_e
0.2729 0.5453

0.6365 0.1818

0.6365 0.1818

0.6365 o.1818

Prob

busy

0.1818

0.1818

0.1818

0.1818
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Run 6: Fast Network, Modules in 4 CPU

Buffer Performance

Prob Empty -- 0.7819
Utilization = 0.2181

Num Lcl Msgs = 0.0000

Num Rein Msgs = 0.2799

TotalNum Msgs = 0.2799

Lcl Msg Rate = 0.0000

Rein Msg Rate = 10906.1969

Total Msg Rate = 10906.1969

Overall queue length by population class

Class[0] avg pop = 1.0000 dest: 0.8081 src: 0.1448 bfr: 0.0471

Class[l] avg pop = 1.0000 dest: 0.8075 src: 0.1439 bfr: 0.0486

Class[2] avg pop = 1.0000 dest: 0.8091 src: 0.1435 bfr: 0.0475

Class[3] avg pop = 1.0000 dest: 0.5135 sre: 0.4409 bfr: 0.0456

Class[4] avg pop = 1.0000 dest: 0.5174 src: 0.4366 bfr: 0.0460

Class[5] avg pop = 1.0000 dest: 0.5192 src: 0.4356 bfr: 0.0451
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Appendix III
Header files for all classes
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